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Let us call self-consistency of localization the requirement that the description
of a localized state from two different inertial frames should be physically
consistent. In previous papers (Kilnay, 1969, 1970) it was shown that this
requirement alone gives a precise answer to the localization problem of a
quantum relativistic elementary system,} at least in the most important cases
(electran, photon, etc.). However, the consequences were heterodox. The self-
consistency of localization implied that in relativistic quantum mechanics ... one
cannot avoid accepting at least one of the following strong departures from the
usual ideas: (i) Position has no sense; (ii) it violates the physical equivalence of
inertial frames; (iii) it is the only quantum variable which cannot be represented
by an operator; (iv) it is non-Hermitian; (v) some unusual interaction effects do
not disappear when the interaction is switched off”. On the other hand, if we
accept possibility (iv),? then the self-consistency of localization defines an essen-
tially unique position operator whose physical properties are satisfactory (compare
Kalnay, 1969, 1970).

The above surprising consequences of the self-consistency of localization in
relativistic quantum mechanics makes it reasonable to clieck it in that part of
the quantum theory where the localization problem is completely solved, i.e. in
the non-relativistic quantum mechanics of a point particle. To do this is the
subject of our present research, whose first results we report here for a spinless
free particle,

Using Levy-Leblond’s work on the Galilei Group {(Levy-Leblond, 1963) we
prove that the self-corisistency of localization for a non-relativistic particle can
be reduced to finding ¢,, g and 5,* such that

(@* + mv*)g(p + mov]) — p*g(lp]) + i(h,* — bl (P + r¥) = O
where g, is a state in momentum representation localized in the point 0 + ib,*
of the third axis, being b,> = b real (we allow, in principle, for imaginary eigen-
values of position in order to see if the seif-consistency requirement implies
Hermiticity of position in this case); b,? is the transformed of by by a Galilei
transformation with velocity v; g is a scalar function related to the position
operator which can, in principle, be complex.

We can easily prove that b} = b,* = 0, which implies in this case the Hermiticity
of the operator: The self-consistency requirement gives the right answer in the

t Strictly extended position (cf. Kdlnay & Toledo, 1967), is not considered.

$ This can be done in quantum mechanics. Compare Sec. 3 of Kilnay & Toledo (1967).
See also the corresponding references quoted in Kélnay (1969).
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known case. This gives further confidence to the use of the self-consistency of
localization as a way of solving the localization problem in the relativistic case,
in spite of the strange consequences that we then obtain.
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1. The theories of elastic dielectrics proposed by Toupin (1963) and Grot and
Eringen (1966) have been generalized by Salt (1969). The main assumptions and
results of the latter work are summarized below.

2. -A motion of a body can be represented by a set of three sufficiently smooth
functions X* = X*(x*), which map a region of the space-time manifold, called
the world tube of the motion, onto the body manifold B (Toupin, 1958). The
x,i=1,2, 3,4, are coordinates of the space-time point x, while the XX, K = 1,2, 3,
are coordinates of the material point X in B. Space-time is a four-dimensional
differentiable manifold, endowed with a fundamental tensor g, that has signature
(+,+,+,-). The functions X*(x*) representing a motion satisfy the conditions
that the matrix }|o; X*|| be of rank 3, and that the three world vectors &, X* be
space-like.

The world velocity vector w' is defined at each x in the world tube of the motion
by the conditions

w; w‘ + l - o
"a‘ X X 0

3. At each point of the world tube of 2 motion an axial scalar mass density
p may be defined such that mass is conserved:

a(pw) =0

For any three-dimensional element of extension d*r; in space-time, pw'!d>v*
is the mass of the element d° X of B which is the image of 4> r, under the mapping
X% = X*(x%).



